์„ ํ˜• ๋Œ€์ˆ˜ ์˜ˆ์ œ

역행렬을 이용하여 풀기 x/2+y/5=4/5 , x/6-y/2=5/6
,
๋‹จ๊ณ„ 1
์—ฐ๋ฆฝ๋ฐฉ์ •์‹์œผ๋กœ๋ถ€ํ„ฐ ๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2
๊ณ„์ˆ˜ํ–‰๋ ฌ์˜ ์—ญํ–‰๋ ฌ์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.1
The inverse of a matrix can be found using the formula where is the determinant.
๋‹จ๊ณ„ 2.2
Find the determinant.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.1
ํ–‰๋ ฌ์˜ ํ–‰๋ ฌ์‹์€ ๊ณต์‹์„ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2
ํ–‰๋ ฌ์‹์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.2.1
๊ฐ ํ•ญ์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.2.1.1
์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.2.1.1.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.1.1.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.1.2
์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.2.1.2.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.1.2.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.2
๊ณตํ†ต ๋ถ„๋ชจ๋ฅผ ๊ฐ€์ง€๋Š” ๋ถ„์ˆ˜๋กœ ์„ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.3
๊ณตํ†ต ๋ถ„๋ชจ๋ฅผ ๊ฐ€์ง€๋Š” ๋ถ„์ˆ˜๋กœ ์„ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.4
๊ฐ ์ˆ˜์‹์— ์ ์ ˆํ•œ ์ธ์ˆ˜ ์„ ๊ณฑํ•˜์—ฌ ์ˆ˜์‹์˜ ๋ถ„๋ชจ๊ฐ€ ๋ชจ๋‘ ์ด ๋˜๋„๋ก ์‹์„ ์”๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.2.4.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.4.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.4.3
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.4.4
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.5
๊ณตํ†ต๋ถ„๋ชจ๋ฅผ ๊ฐ€์ง„ ๋ถ„์ž๋ผ๋ฆฌ ๋ฌถ์Šต๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.6
์—์„œ ์„ ๋บ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2.7
๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ˆ˜ ์•ž์œผ๋กœ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3
Since the determinant is non-zero, the inverse exists.
๋‹จ๊ณ„ 2.4
Substitute the known values into the formula for the inverse.
๋‹จ๊ณ„ 2.5
๋ฐ ์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.5.1
์„ ๋กœ ๋ฐ”๊ฟ” ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.5.2
๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ˆ˜ ์•ž์œผ๋กœ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.6
๋ถ„์ž์— ๋ถ„๋ชจ์˜ ์—ญ์ˆ˜๋ฅผ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.7
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.8
ํ–‰๋ ฌ์˜ ๊ฐ ์›์†Œ์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9
ํ–‰๋ ฌ์˜ ๊ฐ ์›์†Œ๋ฅผ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.9.1
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.9.1.1
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.1.2
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.1.3
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.1.4
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.1.5
์ˆ˜์‹์„ ๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.2
์™€ ์„ ๋ฌถ์Šต๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.3
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.4
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.9.4.1
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.4.2
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.4.3
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.4.4
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.4.5
์ˆ˜์‹์„ ๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.5
์™€ ์„ ๋ฌถ์Šต๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.6
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.7
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.9.7.1
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.7.2
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.7.3
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.7.4
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.7.5
์ˆ˜์‹์„ ๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.8
์™€ ์„ ๋ฌถ์Šต๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.9
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.10
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.9.10.1
์˜ ๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ž๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.10.2
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.10.3
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.10.4
์ˆ˜์‹์„ ๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.9.11
๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ˆ˜ ์•ž์œผ๋กœ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3
ํ–‰๋ ฌ ๋ฐฉ์ •์‹์˜ ์–‘๋ณ€์˜ ์™ผ์ชฝ์— ์—ญํ–‰๋ ฌ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4
์–ด๋–ค ํ–‰๋ ฌ๊ณผ ๊ทธ ํ–‰๋ ฌ์˜ ์—ญ์„ ๊ณฑํ•˜๋ฉด ํ•ญ์ƒ ์ด ๋ฉ๋‹ˆ๋‹ค. .
๋‹จ๊ณ„ 5
์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
๋‹จ๊ณ„ 5.2
์ฒซ ๋ฒˆ์งธ ํ–‰๋ ฌ์˜ ๊ฐ ํ–‰์— ๋‘ ๋ฒˆ์งธ ํ–‰๋ ฌ์˜ ๊ฐ ์—ด์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 5.3
๋ชจ๋“  ์‹์„ ์ „๊ฐœํ•˜์—ฌ ํ–‰๋ ฌ์˜ ๊ฐ ์›์†Œ๋ฅผ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 6
์ขŒ๋ณ€๊ณผ ์šฐ๋ณ€์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 7
ํ•ด๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.